If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2=111
We move all terms to the left:
11x^2-(111)=0
a = 11; b = 0; c = -111;
Δ = b2-4ac
Δ = 02-4·11·(-111)
Δ = 4884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4884}=\sqrt{4*1221}=\sqrt{4}*\sqrt{1221}=2\sqrt{1221}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1221}}{2*11}=\frac{0-2\sqrt{1221}}{22} =-\frac{2\sqrt{1221}}{22} =-\frac{\sqrt{1221}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1221}}{2*11}=\frac{0+2\sqrt{1221}}{22} =\frac{2\sqrt{1221}}{22} =\frac{\sqrt{1221}}{11} $
| 7(6^x)=9022 | | 5y=20y+8 | | 25^5x=62^5 | | s+(-9)=29 | | 9+p=247 | | –24+b=–13 | | 4y=0.0625 | | x+3.8=12.9 | | (10-x)+(4x+20)=180 | | 2(x+1)=2(3+1) | | 17+s=20 | | 7(5+2y)=35+41y | | Y=2(x+1)=2(3+1)=8 | | 4x+5=x²-27 | | Y=2(x+1)=2(3+1)= | | -3x-9+x=x | | 3(6-2x)=4(1-5×) | | 6+d=12 | | 30=4x+72 | | F(x)=5-2x² | | 5x+1=2x-13 | | 8-w=18 | | 5x=1+2x-3 | | 5x-1=2x–13 | | 5.5x–2=3.5x+4 | | 5x-1=2–13 | | 11-2(8+3p)=7^(2) | | 3c+2=23 | | 20=2+x | | 4x+5+3x=61 | | 4^3x+8=25^2x | | 9(a-4)=81 |